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SUMMARY

A numerical study has been undertaken to examine the behaviour of a gas liquid interface in a vertical
cylindrical vessel subjected to a sinusoidal vertical motion. The computational method used is based
on the simpli�ed marker-and-cell method and includes a continuum surface model for the incorporation
of surface tension. The numerical results indicate that the surface tension has very little e�ect on the
period and amplitude of oscillations of the interfacial waves. The stability of the interfacial waves has
been found to depend on the initial pressure pulse disturbance, and exponential growth of the interfacial
wave has been observed in some cases. The in�uence of the amplitude and frequency of the forcing
oscillations has also been investigated. The results are in good agreement with available experimental
and analytical solutions. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Surface waves generated by vertically vibrating a horizontal �uid layer have been studied for
a long time. Faraday [1] was possibly the �rst investigator to conduct systematic experiments
and observed surface waves on ink, water, alcohol, milk and other liquids. He noted the
important property that the frequency of the waves was half the frequency of the forcing
vibration. Later Rayleigh [2] suggested a theoretical treatment of the problem, supported by
more detailed observations. In general, the investigation of horizontal �uid layers subjected
to vertical oscillation is known as the determination of Faraday stability.
Surface waves induced by vertical motion have recently received renewed attention, as the

principles of wave instability are important in many areas, such as spray technologies and ink
jet printers. A more comprehensive overview is given by Valha and Kubie [3].
This article is based on the work of Valha [4], who investigated the stability of gas–liquid

interfaces in a vertical cylindrical vessel subjected to a sinusoidal vertical motion. The paper
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by Valha and Kubie [3] described the experimental work, which indicated that there was a
certain limiting critical frequency at which the gas–liquid interface became unstable, signif-
icant amounts of liquid were thrown vertically upwards from the interface and the interface
thus lost its coherent structure. The experimental results were compared with an analytical
solution based on the reduction of governing non-viscous equations to a Mathieu equation,
and good agreement between theory and experiment was found.
It is the purpose of this paper to describe a computational �uid dynamics (CFD) approach

to the solution of a more general problem, which, in contrast to the previous work, addition-
ally considers the e�ect of the liquid viscosity. Typical numerical results are presented and
compared with the previously obtained analytical results for inviscid �ow.

2. COMPUTATIONAL WORK

2.1. Governing equations

Following the work of Valha and Kubie [3], we consider a cylindrical column of radius R
(diameter D) and height L, as shown in Figure 1. This cylinder, containing a liquid layer of
height l in its bottom section and air in its top section, and closed at both ends, is subjected
to regular sinusoidal oscillatory motion along its vertical axis with the upward acceleration a
is given by

a=A!2 cos(!t) (1)

By physical equivalence we can regard the system as a stationary column subjected to
oscillatory acceleration in the vertical direction given by

gz=−g− A!2 cos(!t) (2)

The basic equations describing two-dimensional, time-dependent �ow of a constant viscosity
incompressible �uid are
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where Fbr and Fbz represent the forces due to surface tension and their signi�cance, as well as
the method of computation, is discussed later. Equation (3) represents continuity, and Equa-
tions (4) and (5) describe conservation of momentum in the r and z directions, respectively.
When working in Cartesian co-ordinates �=0 and when in cylindrical co-ordinates �=1. Fur-
thermore, for the vertically vibrating system analysed in this work, the horizontal component
of acceleration in Equation (4) is gr =0.
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Figure 1. Diagram of the system investigated in the present work.

2.2. Computational method

2.2.1. General considerations. A number of methods are available for the simulation of
problems concerning time-dependent viscous �ow of incompressible �uid in several space
dimensions. The most widely used method is probably the marker-and-cell (MAC) method
developed by Welch et al. [5]. This method explicitly discretizes the time-dependent gov-
erning equations and utilizes a grid of massless Lagrangian particles that are used for the
representation of the position of the �uid. The rearrangement of the equations then yields a
Poisson equation for pressure. A further development of the technique, the simpli�ed marker-
and-cell (SMAC) method of Amsden and Harlow [6] simpli�es the problem. In the SMAC
method the pressure is not calculated over the whole computational domain, but only at the
free surface and hence the problems associated with the solution of the Poisson equation for
pressure, when solving Equations (3)–(5) are avoided. The SMAC method was used in the
present analysis.
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Figure 2. SMAC computational mesh.

The essence of the computational procedure is as follows. Vorticity �, given by

�=
@u
@z

− @v
@r

(6)

is independent of pressure. Hence, any �eld of pressure inserted into Equations (4) and (5)
will ensure that the resulting velocity �eld carries consistent vorticity.
Equations (3)–(6) are re-written in explicit �nite di�erence form. The true pressure, nor-

malized to unity density, � is replaced by an arbitrary pressure �eld �. The notation associated
with a typical SMAC �nite di�erence cell is shown in Figure 2. The �nite di�erence forms
of the r-direction and the z-direction momentum conservation equations (4) and (5) are then
combined to obtain a transport expression for the vorticity � which is independent of the
pressure �eld �. The boundary conditions for the walls and the free surface are then speci�ed
in the usual way. The explicit calculation of the initial velocities then ensures that the vorticity
at every mesh point is consistent and independent of the choice of �. In the second phase of
the calculations the initial velocity �eld is adjusted into the �nal velocity �eld that satis�es
continuity for every cell.
In addition to the mesh of Eulerian cells, shown in Figure 2, the SMAC algorithm employs

a set of massless marker particles, which enable visual representation of the �uid, but whose
essential purpose is to de�ne the position of the free surface so that the con�guration of the
surface cells can be determined.

2.2.2. Modelling of surface tension. The in�uence of surface tension is given in Equations (4)
and (5). In the present analysis the surface tension phenomena are modelled using the contin-
uum surface force (CSF) model of Kothe et al. [7]. The model interprets surface tension as a
continuous multidimensional e�ect across an interface, rather than a boundary value condition
on the interface as used by Welch et al. [5]. As mentioned above, the e�ect is modelled via
the Fbr and Fbz terms in Equations (4) and (5), respectively.
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Figure 3. Notation used for the evaluation of the e�ects of surface tension.

The volume force due to surface tension is given as

F̃sv(̃x)=��(̃x)∇F (̃x) (7)

where, as discussed by Hirt and Nichols [8], the volume of �uid (VOF) function F represents
the fractional volume of the cell occupied by the �uid. Cells with the F values between zero
and one contain a free surface. Hirt and Nichols [8] devised an algorithm for accurate solution
of the di�erential equation for the transport of F . The method used in this work to obtain the
values of F on the surface was to split the surface cells using a subgrid.
The surface curvature � is given by Drazin and Reid [9] as

�=−(∇ · n̂)= 1
|̃n| ·

[(
ñ
|̃n| · ∇

)
|̃n| − (∇ · ñ)

]
(8)

where the unit normal

n̂=
ñ
|̃n| (9)

is derived from the normal vector given by the gradient of the F function

ñ=∇F (̃x) (10)

The volume force Fsv given by Equation (7) is located at the computational cell centres.
Equation (7) shows that the curvature � must also be located at the cell centres. The CSF
model for the surface tension applied in the present analysis places the normal vector at the
vertices, taking the cell centred normal as the average of the vertex normals, and the curvature
� at the cell centres, as shown in Figure 3. The details of the �nite di�erence expansion of
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Figure 4. Computational mesh used for the numerical experiments.

Equations (7)–(10) are given, for example, by Brackbill et al. [10] and are not presented
here.
The components of Fsv in the r and z directions are obtained by evaluating the r and z

components of the mesh corner normals, as shown in Figure 3, and then taking their average
to get the cell centred value; hence

Fsv r ≡ |F̃sv r (̃x)|=��ñr (11)

Fsv z ≡ |F̃sv z (̃x)|=��ñz (12)

Finally, the components of the surface tension force in Equations (4) and (5) are normalized
by the �uid density, so that

Fbr =
Fsv r
�

(13)

Fbz =
Fsv z
�

(14)
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Figure 5. Diagram of the pressure pulse wave applied on the free surface.

are the source terms representing the e�ects of surface tension in the computational procedure;
these terms are, as indicated by Equations (4) and (5), additional to the accelerations gr and
gz in each cell.

2.2.3. Overview of the computational cycle. The equations presented above, rewritten in
�nite di�erence form, have been implemented in a computer program for calculation of the
time-dependent �uid velocity components and the corresponding marker particle positions. To
simplify the handling of boundary conditions, the program also employs a single layer of
boundary cells on all four sides of the mesh. The problem speci�c input data includes the
values of the �uid properties �; � and �, details of the domain boundary conditions (either
free-slip or no-slip), the frequency and amplitude of the vertical sinusoidal forcing oscillations
and the shape of the pressure pulse initially applied to the free surface. In addition, information
is required on the number of marker particles as well as their initial distribution and initial
velocity components. Cell �ags are then initialized to indicate boundary wall cells, empty
cells, full cells, and free surface cells. Values must also be given for the over-relaxation
parameter used in an iterative calculation performed at each time step and the associated
convergence tolerance to be satis�ed. Apart from the addition of surface tension modelling
the computational cycle follows the SMAC methodology described in detail by Amsden and
Harlow [6].
The remainder of the computational cycle comprises three phases. In the �rst phase a ten-

tative set of new-time velocities, referred to as tilde velocities, is calculated using an arbitrary
pressure distribution �. As a �rst step, values of �i; j are generated for each cell. For full cells
�i; j is arbitrarily set to zero. However, in the surface cells, �i; j is taken to include the applied
pressure �(applied) on the free surface, the surface tension stress and the viscous contribu-
tion to the normal stress. Next, boundary conditions are invoked to determine appropriate
tangential velocity values for the cells just outside the surface cells and the boundary cells,
that satisfy the free surface tangential stress condition and free-slip or no-slip wall condition,
respectively. The tilde velocities are then calculated from Equations (4) and (5), written in
explicit �nite di�erence form, with the terms Fbr and Fbz representing the in�uence of surface
tension evaluated as described in Section 2.2.2. Velocities at the empty-cell faces of surface
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Figure 6. Time sequence of the interfacial position of glycerol
(�=0:00 N m−1; A=70 mm; f=3 Hz; h=20 mm).

cells are not, however, evaluated at this stage (see below). The correct speci�cation of velocity
boundary conditions ensures that the resulting tilde velocity �eld carries the correct vorticity,
regardless of the arbitrary nature of the pressure distribution assumed. However, this tentative
set of velocities does not satisfy the continuity Equation (3).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:697–721
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Figure 7. Time sequence of the interfacial position of glycerol
(�=0:03 N m−1; A=70 mm; f=3 Hz; h=20 mm).

The purpose of the second phase is to adjust the tilde velocities in such a manner that the
�nal velocity �eld preserves the vorticity embedded during the �rst phase of the calculation,
and also satis�es the continuity Equation (3) in �nite di�erence form for every cell, i.e.
Di; j=0. As a �rst step, the tilde velocities are used to calculate values of this divergence
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Figure 8. Time sequence of the interfacial position of glycerol
(�=0:15 N m−1; A=70 mm; f=3 Hz; h=20 mm).

which consequently do not vanish as required. The necessary adjustment of the velocity �eld
is equal to the local gradient of the potential function. Values of this function are calculated
for the full cells only by an iterative �nite di�erence solution of the governing equation,
derived from Equation (3), using a point-by-point successive over-relaxation scheme. For
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Figure 9. Time sequence of the interfacial position of water
(�=0:00 N m−1; A=70 mm; f=2 Hz; h=2:5 mm).

the surface cells, the function is set to zero. The procedure just described is applied to
evaluate the �nal corrected velocities at all cell faces other than the empty-cell faces of
surface cells, where the normal velocities are determined by enforcing that Di; j=0 for each
surface cell. As a �nal step in this phase, the tangential velocities in the cells just outside
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Figure 10. A plot of the wave displacement of glycerol at the axis of symmetry as a function
of time (�=0:00 N m−1; A=70 mm; h=5 mm).

the surface cells and the boundary cells are reset by the same procedure as used in the �rst
phase.
In the third phase the new marker particle co-ordinates, in the r and z directions, are cal-

culated based on area-weighted averages of the four nearest values of the corrected velocities
u and v. Finally, control is returned to the re�agging section to begin the next time cycle.

3. RESULTS AND DISCUSSION

The numerical method described in the above section has been applied to investigate the
behaviour of interfacial surface waves induced by vertical sinusoidal motion. A number of
numerical experiments were carried out to investigate the in�uence of the liquid properties,
the nature of the forcing oscillations and the initial disturbance on the interfacial surface.
All numerical experiments were run on a two-dimensional 25× 30 uniform cylindrical co-

ordinate mesh of 0:00138 m grid size in both the r and z directions, corresponding to the
size of the 69 mm diameter cylinder used in the experimental work described by Valha and
Kubie [3]. The mesh shown in Figure 4 represents only half of the cylinder as the problem
is axially symmetrical. The axis of symmetry is located on the left-hand boundary of the
computational mesh. All boundaries were chosen to be of free-slip type, thus exerting no
drag upon the �uid.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:697–721
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Figure 11. A plot of the wave displacement of glycerol at the axis of symmetry as a function
of time (�=0:00 N m−1; A=70 mm; h=10 mm).

Four marker particles per cell, initially uniformly distributed, were used throughout the
present numerical work. Figure 4 shows the initial distribution of the liquid inside the com-
putational domain. The previous work of Valha and Kubie [3] indicates that the in�uence of
the liquid height on the behaviour of the interfacial wave is expressed via a tanh(kml) term.
If only the �rst and second modes of oscillation are assumed to occur on the interface, the
tanh(kml) values are 0.894 and 0.997, respectively. These values are su�ciently close to 1,
and therefore the e�ects of the liquid base, represented by the lowest part of the computational
domain, on the numerical result may be neglected. The typical timestep used was 0:0001 s.
Tests were also run with a halved timestep and halved mesh size but no signi�cant changes
in results obtained were found.
The calculations were started by applying a pressure pulse in the form of a sinusoidal wave

on the surface cells for the �rst time cycle. This form was chosen because it approximates
the shape of the surface observed during the experimental work of Valha and Kubie [3]. It
should be noted that in the surface cells, the pseudopressure is equal to the true pressure.
The term representing the pulse, which is added to the surface pressure �, and denoted by
�(applied) is given by

�(applied)=
B cos(XCr)

�t
(15)
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Figure 12. A plot of the wave displacement of glycerol at the axis of symmetry as a function
of time (�=0:00 N m−1; A=70 mm; h=20 mm).

where X is a parameter equal to 1 for a half sinusoidal wave and 2 for a full sinusoidal
wave. Only the two cases of X =1 and 2 were investigated in the present work. Parameters
B and C, obtained as a result of linear analysis for a rectangular vessel [9], are de�ned with
reference in Figure 5 as

B= h

√
gl
�

(16)

C =
	
R

(17)

�=Cl tanh(Cl) (18)

Equations (16)–(18), even though derived for a rectangular geometry, provide a good means
of commencing the calculations. The in�uence of the magnitude of this initial disturbance,
speci�ed in terms of the wave amplitude h, on the stability of the interface is also a subject
of this investigation.
The numerical experiments were performed for water and glycerol, since the two liquids

have signi�cantly di�erent properties. The analytical work of Valha and Kubie [3] neglected
the e�ects of viscosity, but showed the in�uence of surface tension, whereas the work of
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Figure 13. A plot of the wave displacement of glycerol at the axis of symmetry as a function
of time (�=0:00 N m−1; A=70 mm; h=30 mm).

Kumar and Tuckerman [11], based on a non-linear analysis of the problem, described the
in�uence of viscosity on the frequency of the interfacial wave oscillations. The present nu-
merical analysis allows both surface tension and viscosity e�ects to be included and thus
enables a comparison between computational and analytical results. Three groups of numeri-
cal tests were therefore undertaken. In the �rst group of tests the surface tension phenomena
were not taken into account, in the second group of tests the true surface tension values of the
two liquids were considered and the CSF model was employed to simulate their e�ect, and in
the third group of tests a higher value of the surface tension was assumed. The amplitude of
the forcing oscillations was set at 70mm for the majority of the tests. This value was chosen
because it is approximately in the middle of the range of amplitudes investigated experimen-
tally [3]. However, some tests were also run for an amplitude of the forcing oscillations set
at 30 mm.
Figure 6 shows a time sequence of the interfacial position for glycerol but neglecting sur-

face tension. The surface was initially disturbed by a full sinusoidal pulse over the whole
surface (shown in Figure 5), where h in Equation (16) was set at 20 mm, and the amplitude
and the frequency of the forcing oscillations were set at 70mm and 3Hz, respectively. It can
be seen that the wave created on the interface does not become unstable in this particular case.
The results for the same conditions but including the surface tension phenomenon are shown
in Figure 7. The surface tension coe�cient of glycerol was taken as �=0:030 N m−1. Very
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little di�erence can be observed between the marker particle positions in Figures 6 and 7.
To investigate fully the signi�cance of surface tension, a set of experiments with the surface
tension set at �=0:15 N m−1 was also run. It should be noted that this value of the sur-
face tension is �ve times greater than the true value for glycerol. Figure 8 shows the time
sequence obtained for the same forcing oscillation conditions as for the cases considered in
Figures 6 and 7 but the higher surface tension coe�cient. Local surface ripples can now be
observed.
Similar numerical experiments were run for water, neglecting the e�ect of surface tension,

with a forcing oscillation amplitude A=70mm and a frequency f=2Hz. An initial sinusoidal
pressure pulse with h=2:5mm was used. The time sequence of the surface wave propagation
is shown in Figure 9. The damping e�ect of viscosity is now small, since the dynamic viscosity
of water is more than 800 times lower than the dynamic viscosity of glycerol, and higher
modes of oscillation in the form of local ripples can be observed.
The time histories of the predicted interfacial wave displacements, measured at the axis

of symmetry and taken directly from graphs similar to those shown in Figures 6–9, and
expressed in terms of mesh units are discussed next. It should be noted that the accuracy of
the displacement readings is about 25% of the mesh grid size. The in�uence of initial pressure
pulse disturbance was investigated for values of h=5; 10; 20 and 30 mm and h=1; 2:5 and
5 mm for glycerol and water, respectively. It was found that for both liquids studied and
the geometry investigated the surface tension had a negligible e�ect on the behaviour of the
interfacial waves. Figures 10–13 show plots of the wave displacement of glycerol at the axis
of symmetry (given in terms of the initial wave amplitude h) as a function of time, with the
frequency of the forcing vibrations f as a parameter, and four di�erent values of the initial
wave amplitude h, respectively. Figures 14–16 show a similar set of graphs for water.
The experimental results obtained by Valha and Kubie [3] indicate that the critical

frequency causing the interfacial wave to grow unstable is, for 70mm amplitude of the forcing
oscillations, 2Hz for water and 4Hz for glycerol. In the numerical computations presented in
this work exponential wave growth is �rst observed for glycerol in Figure 11 for a forcing
oscillation frequency of 5 Hz and an initial disturbance of h=10 mm. Figures 12 and 13,
for the higher values of h, do not indicate that the wave grows unstable for lower forcing
frequencies. The numerical results for water are qualitatively di�erent. Figure 14 indicates
that for h=1mm the wave does not grow unstable for the range of frequencies investigated.
The results for the initial amplitude of the pulse h=2:5 mm, shown in Figure 15, indicate
that the oscillations increase with time for frequencies above about 2 Hz. This is in good
agreement with the experimental �ndings. However, Figure 16 indicates that for h=5 mm
the interfacial wave has already grown unstable for a forcing frequency of 1 Hz. Since the
analytical solution of the problem was based on the assumption of small oscillations of the
interfacial wave, the numerical results indicate that the stability of the interface is depen-
dent not only on the forcing oscillations but also on the initial disturbance applied to the
surface.
As discussed above, the analytical results of Valha and Kubie [3] are based on the solution

of a Mathieu equation, which can be re-written, assuming that all points on the interface
undergo identical oscillations as

d2

dt2

+!20

[
1− kmA!2 cos(!t)

!20

]

=0 (19)
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Figure 14. A plot of the wave displacement of water at the axis of symmetry as a function
of time (�=0:00 N m−1; A=70 mm; h=1 mm).

where

!20 =
�
�
k3m + gkm (20)

and !0 is the undamped angular velocity of oscillations of the interface with no forcing vibra-
tions. The corresponding period of the interfacial wave oscillations can be easily determined
from Equation (20). The period of the interfacial oscillations can also be estimated from
Figures 10–16. These �ndings are summarized in Figures 17 and 18 for water and glycerol,
respectively.
It can be seen that the magnitude of the initial pulse disturbance has little in�uence on

the half period of oscillation of the interfacial wave. As stated above, Equation (20) gives
an expression for the angular velocity of oscillations of the interfacial wave with no forcing
vibrations. It should be noted that only the �rst mode of oscillation is assumed to occur,
therefore for the given 69mm diameter cylinder km=69:7m−1. The corresponding analytically
derived periodic times (and based on the periodic behaviour) are compared with those obtained
numerically (and based on the transient behaviour) in Table I.
As mentioned earlier, and as shown for example in Figure 9, higher modes of oscillation

can occur on the liquid surface. This fact is mathematically expressed by the summation over
the range of modes of oscillation in the Mathieu equation. However, the Floquet theorem
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Figure 15. A plot of the wave displacement of water at the axis of symmetry as a function
of time (�=0:00 N m−1; A=70 mm; h=2:5 mm).

analysis of the governing Mathieu equation presented by Valha and Kubie [3] assumes only a
single mode of oscillation. Nevertheless it may be assumed that the value of km increases due
to the presence of the higher modes and therefore the period of oscillation of the interfacial
wave decreases correspondingly. This may provide an explanation of the slight di�erence
between the analytical and CFD results for water. Good agreement between the analytical
and computational results is found for glycerol where a single mode of oscillation is present
throughout most of the investigated timespan.
Kumar and Tuckerman [11] derived an expression for the angular velocity of interfacial

wave oscillations incorporating the e�ect of liquid viscosity. In their analysis they derived a
damping coe�cient � which is based on the rate of dissipation of the total mechanical energy
due to viscosity. The expression obtained for the coe�cient � is

�=2k2m� (21)

The corrected angular velocity of oscillations, incorporating the e�ects of viscosity is then
given by

!2D =!
2
0 − �2 (22)

where !D is the angular velocity of the damped oscillations. Equation (22) implies that the
period of oscillation of the free surface wave increases with increasing liquid viscosity. This

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:697–721



SINUSOIDAL VERTICAL MOTION OF GAS–LIQUID INTERFACE 715

Figure 16. A plot of the wave displacement of water at the axis of symmetry as a function
of time (�=0:00 N m−1; A=70 mm; h=5 mm).

change is insigni�cant for water. For glycerol, however, the square of angular velocity of the
damped oscillations is about 650 rad2 s−2 and the corresponding half period is about 0:12 s.
This value is still within the range of the half periods shown in Figure 18 for no forcing
vibrations, and there is only a 3% di�erence between the period of damped and inviscid wave
oscillations.
To investigate the in�uence of the mode of oscillation, numerical experiments were also

run for a half sinusoidal initial pressure pulse disturbance. It was found that the wave created
on the interface adopted similar oscillatory behaviour to that found in the case when a full
sinusoidal initial disturbance was applied on the surface. The corresponding time history of the
wave displacement in glycerol is shown in Figure 19. This can be compared with the results
presented in Figure 12; it shows that the period of wave oscillation remains unchanged, thus
con�rming the use of only the �rst mode of oscillation in the above discussion.
Numerical experiments were also run to investigate the e�ect of the amplitude of the

forcing vibration, including tests for the amplitude A=30mm. Experimental data for glycerol
presented by Valha and Kubie [3] show that at this amplitude the critical frequency for the
interfacial wave to grow unstable is about 5 Hz. The numerically predicted time history of
the wave displacement is shown in Figure 20. It can be observed from Figure 20 that for this
particular case the wave created on the interface is clearly unstable for a forcing oscillation
frequency of 6 Hz, although it is still stable for 4 Hz. It may be deduced that the point at
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Figure 17. A plot of the periodic time of interfacial oscillations of water as a function of the
forcing frequency (�=0:00 N m−1; A=70 mm).

which the sudden instability occurs lies within the range of these two values, which is in
good agreement with the experimental �nding.
A comparison of the periods of oscillation of the interfacial waves for forcing vibration

amplitudes of 30 and 70 mm, as shown in Figures 20 and 12, respectively, shows that at
any given forcing frequency the oscillation period is shorter for the higher amplitude case,
particularly for the higher forcing frequencies. This agrees with the analytical results.
Figures 10–16, 19 and 20 indicate that the frequency of oscillation of the interfacial wave

increases with increasing forcing frequency. This is, once again, supported by the analytical
solutions which show that the frequency of oscillations of the interfacial wave is determined
uniquely by the frequency of the forcing vibrations. The wave can oscillate with angular
velocities equal to the multiples of half of the angular velocity of the forcing vibrations.

4. CONCLUSIONS

A computational analysis has been carried out to examine the behaviour, especially the stabil-
ity, of a gas liquid interface in a vertical cylindrical vessel subjected to a sinusoidal vertical
motion. Water and glycerol were the liquids considered. The work follows the earlier pub-
lished analytical solutions of the problem.
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Figure 18. A plot of the periodic time of interfacial oscillations of glycerol as a function of the
forcing frequency (�=0:00 N m−1; A=70 mm).

The computational method used is based on a SMAC, which uses the continuum surface
force model for the incorporation of the surface tension. It has been found that the surface
tension has very little e�ect on the period and amplitude of oscillation of the interfacial wave.
However, small local ripples caused by surface tension e�ects do occur. The computations
indicate that higher modes of oscillation are established on the stability boundary.
It has also been found that the magnitude of the initial sinusoidal pressure disturbance

imposed on the interface does not have any signi�cant e�ect on the period of oscillation of the
interfacial wave, but that it does in�uence its amplitude. The stability of the interfacial wave
has been found to depend on the initial pressure pulse disturbance, and exponential growth
of the interfacial wave has been observed in some cases. The period of wave oscillation
determined computationally for a cylinder without forcing oscillations agrees well with the
analytical �ndings. The agreement is particularly good for high viscosity liquids such as
glycerol.
Numerical experiments have been also performed for a half sinusoidal initial pressure dis-

turbance on the surface to investigate the in�uence of the mode of oscillation. It has been
found that the wave created on the interface establishes an oscillatory behaviour similar to
that found in the case of a full sinusoidal disturbance, thus con�rming that only a single
dominant mode of oscillation occurs.
Finally, the in�uence of the amplitude of the forcing oscillation has also been investigated.

The computational �ndings suggest that for the higher values of the amplitude and a particular
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Table I. Comparison of the analytical and computational results for the period of oscillations of the
interfacial waves obtained with no forcing vibrations.

Analytical results Computational results

!0 (rad s−1) T0 (s) T0 (s)

Water 26.6 0.236 0.19
Glycerol 26.3 0.238 0:24∗

∗Average value over the range of h investigated.

Figure 19. E�ect of half sinusoidal initial disturbance on the wave displacement of glycerol at the axis
of symmetry as a function of time (�=0:00 N m−1; A=70 mm; h=20 mm).

frequency, the oscillation period decreases, which agrees well with the analytical results. The
computations have also shown that with the increasing frequency of the forcing vibration the
frequency of oscillations of the interfacial wave also increases. This is, once again, supported
by the analytical solutions.
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Figure 20. E�ect of the amplitude of the forcing vibration on the wave displacement of glycerol at the
axis of symmetry as a function of time (�=0:00 N m−1; A=30 mm; h=20 mm).

NOMENCLATURE

a oscillatory acceleration, m s−2

A amplitude of oscillatory motion, m
B parameter given by Equation (16), m2 s−1

C parameter given by Equation (17), m−1

D continuity function, s−1

f forcing frequency, Hz
F volume of �uid function
Fb body force source due to surface tension, m s−2

Fsv continuum surface force, Nm−3

g gravitational acceleration, m s−2

h amplitude of the initial disturbance, m
k wave number, m−1

l height of liquid column, m
L height of the cylinder, m
n direction vector
r horizontal co-ordinate, m
R radius of the cylinder, m
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t time, s
T period of oscillations of interfacial waves, s
T0 period of oscillations of interfacial waves with no forcing vibrations, s
u velocity in r direction, m s−1

v velocity in z direction, m s−1

X parameter
z vertical co-ordinate, m

Greek letters
� true pressure normalized to unity density, m2 s−2

� damping coe�cient, s−1


 interface displacement measured from equilibrium position, m
� curvature of the interface, m−1

� kinematic viscosity, m2 s−1

� arbitrary pressure �eld, Pa
� density, kgm−3

� surface tension, N m−1

! angular velocity of the imposed oscillatory motion, rad s−1

!D damped angular velocity of oscillations of the interface with no forcing
vibrations, rad s−1

!0 undamped angular velocity of oscillations of the interface with no forcing
vibrations, rad s−1

� vorticity, s−1

� parameter given by Equation (18)

Subscripts and superscripts

i; j mesh positions
m order of mode oscillation
r horizontal direction
z vertical direction
� co-ordinate exponent
ˆ unit vector
→ vector
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